
Chapitre 5

Calorimétrie

5.1 Transfert de chaleur comme fonction de V et p

Le transfert de chaleur infinitésimale δQ est exprimé comme fonction des va-
riables d’état T et V dans l’équation (5.4). Il est exprimé comme fonction des
variables d’état T et p dans l’équation (5.17). Exprimer ce transfert de chaleur
infinitésimale δQ comme fonction des variables d’état V et p.

5.1 Solution

Le transfert de chaleur infinitésimale δQ peut être exprimé comme fonction du
volume V et de la pression p,

δQ = T (V, p) dS (V, p) = LV (V, p) dV + Lp (V, p) dp

où

LV (V, p) = T (V, p)
∂S (V, p)

∂V
et Lp (V, p) = T (V, p)

∂S (V, p)

∂p

5.2 Pompe à vélo

Une pompe à vélo prend un volume ∆V d’air à pression atmosphérique p0 et
température constante T0 et le compresse pour qu’il entre dans un pneu de
volume V0. L’air dans le pneu est initialement à pression atmosphérique p0 et
peut être considéré comme un gaz parfait. Déterminer le nombre n de fois que
l’utilisateur doit pomper de l’air dans le pneu pour atteindre une pression pf .
On suppose que la pompe est conçue de sorte que l’air dans le pneu est toujours
à température T0.
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Application numérique

V0 = 50 l, ∆V = 1.2 l et pf = 2.5 p0.

5.2 Solution

Le nombre initial de moles de moles d’air dans le pneu de volume V0 à tempé-
rature T0 est,

N0 =
p0 V0

RT0

et le nombre final est

Nf =
pf V0

RT0
ainsi

Nf
N0

=
pf
p0

Le nombre de moles supplémentaires d’air pompées chaque fois dans le pneu
est,

∆N =
p0 ∆V

RT0
et Nf = N0 + n∆N

Ainsi,
Nf
N0

= 1 + n
∆N

N0
= 1 + n

p0 ∆V

N0RT0
= 1 + n

∆V

V0
=
pf
p0

ce qui implique que,

n =

(
pf
p0
− 1

)
V0

∆V
= 62.5

Cela signifie que l’air doit être pompé 63 fois afin d’atteindre une pression finale
pf qui est égale ou supérieure à 2.5 p0.

5.3 Transfert de chaleur à pression constante

Un récipient rempli de gaz est isolé thermiquement de l’environnement excepté
pour un petit trou qui garantit que la pression à l’intérieur du récipient est égale
à la pression atmosphérique p0. Initialement, le récipient contient Ni moles de
gaz à température Ti. La chaleur spécifique molaire du gaz à pression constante
est cp. Le gaz est chauffé par une résistance électrique dans le récipient jusqu’à
une température finale Tf . Durant l’augmentation de température du gaz, une
partie du gaz sort du récipient par le petit trou. On suppose que pour le gaz
qui reste dans le récipient, le processus est réversible est on néglige la chaleur
spécifique de la résistance. Déterminer :

1) le volume V0 du récipient.

2) le nombre de moles ∆N qui sortent du récipient durant ce processus.

3) la chaleur Qif transférée durant ce processus.
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Application numérique

p0 = 105 Pa, N0 = 10 moles, T0 = 273 K, cp = 29.1 J K−1 mol−1, Tf = 293 K.

5.3 Solution

1) Le volume du récipient est,

V0 =
NiRTi
p0

= 227 l

2) Le nombre final de moles est,

Nf =
p0 V0

RTf
= Ni

Ti
Tf

Ainsi, le nombre de moles quittant le récipient durant ce processus est,

∆N = Ni − Nf = Ni

(
1− Ti

Tf

)
= 0.68 mol

3) A l’aide d’un résultat établi en 2), la chaleur transférée durant ce processus
est,

Qif =

∫ f

i

N cp dT = cpNi Ti

∫ Tf

Ti

dT

T
= cpNi Ti ln

(
Tf
Ti

)
= 5.6 kJ

5.4 Chaleur spécifique d’un métal

Un bloc métallique de masse M est amené à une température T0. Il est alors
plongé dans un calorimètre rempli d’une masse M ′ d’eau. Le système constitué
du bloc métallique et du calorimètre rempli d’eau est considéré comme isolé.
Durant ce processus, la température de l’eau augmente de Ti à Tf , la tempé-
rature d’équilibre. La chaleur spécifique de l’eau par unité de masse est c∗M ′ .
Déterminer la chaleur spécifique par unité de masse du métal c∗M en fonction
des températures utilisées dans cette expérience. Considérer que le calorimètre
est constitué d’un matériau de chaleur spécifique négligeable.

Application numérique

M = 0.5 kg, M ′ = 1 kg, T0 = 120◦C, Ti = 16◦C, Tf = 20◦C and c∗M ′ = 4187 J
kg−1 K−1.

5.4 Solution

Comme le système constitué du bloc métallique et de l’eau est isolé, la variation
d’énergie interne est nulle,

∆Uif = M c∗M (Tf − T0) +M ′ c∗M ′ (Tf − Ti) = 0

ce qui donne la chaleur spécifique par unité de masse du métal,

c∗M = c∗M ′
M ′

M

Tf − Ti
T0 − Tf

= 335 J kg−1 K−1
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5.5 Accroissement de la température lors d’un choc

Un solide de masse M est en chute libre d’une hauteur h. Il entre en collision
avec le sol et reste collé au sol après le choc. Durant le choc, on suppose qu’il
n’y a pas de déformation macroscopique du solide et qu’il n’y a pas de transfert
de chaleur entre le sol et le solide. Soit i l’état initial juste avant la collision et
f l’état final juste après la collision. Déterminer la variation de température du
solide ∆Tif durant le choc.

5.5 Solution

Par conservation de l’énergie mécanique avant le choc, l’énergie cinétique du
solide juste avant le choc est égale à l’énergie potentielle de pesanteur initiale.
Durant le choc, l’énergie cinétique du solide est entièrement convertie en énergie
interne. Par conséquent, la variation d’énergie interne est donnée par,

∆Uif = Mgh

En prenant la différence de l’expression (5.46) de l’énergie interne durant le
choc, on obtient,

∆Uif = 3NR∆Tif

Ainsi l’augmentation de la température du solide durant le choc est de la forme,

∆Tif =
Mgh

3NR

5.6 Mesure de la chaleur spécifique de l’eau

Des étudiants chauffent de l’eau avec un corps de chauffe électrique constitué
de N moles de fer. A l’aide d’un thermomètre, ils relèvent la température T (t)
de l’eau et constatent qu’elle augmente linéairement en fonction du temps,

T (t) = T0 + α t

où T0 est la température ambiante et α > 0 est une constante positive. La
puissance électrique du corps de chauffe est entièrement convertie en puissance
thermique PQ par effet Joule (sect. 11.4.11). On néglige l’expansion du volume
d’eau et on considère que la chaleur spécifique CV à volume constant de l’eau
est indépendante de la température.

1) Déterminer l’expression de la chaleur spécifique CV à volume constant de
l’eau en fonction de la puissance thermique PQ du corps de chauffe et du
coefficient expérimental α en prenant en compte le fait que le corps de
chauffe doit aussi être chauffé.

2) Déterminer l’expression de la variation d’entropie ∆S de l’eau durant un
intervalle de temps ∆t en fonction de CV et α.
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5.6 Solution

1) La chaleur spécifique à volume constant du système est la somme des
chaleurs spécifiques à volume constant du corps de chauffe en fer, donné
par l’équation (5.44), et de l’eau. Ainsi, d’après la relation (5.3) à volume
constant, i.e. V̇ = 0, la puissance thermique s’écrit,

PQ = (CV + 3NR) Ṫ

Des deux équations précédentes et de la dépendance en temps de la tem-
pérature T (t), on tire l’expression de la chaleur spécifique de l’eau,

CV =
PQ
α
− 3NR

2) A l’aide de l’équation (5.32), la variation d’entropie ∆S s’écrit,

∆S = CV

∫ T0+α∆t

T0

dT

T
= CV ln

(
1 + α

∆t

T0

)

5.7 Travail en compression adiabatique

Un gaz parfait subit une compression adiabatique réversible d’un volume initial
Vi et d’une pression initiale pi à une pression finale pf . Déterminer le travail
Wif effectué sur le gaz durant ce processus.

Application numérique

Vi = 1 l, pi = 5 · 105 Pa, pf = 2pi, c = 5/2 (définition (5.62)).

5.7 Solution

Pour une compression adiabatique, le travail effectué sur le gaz est exprimé
comme,

Wif = ∆Uif = cN0R (Tf − Ti) = c
(
pf Vf − pi Vi

)
où

pf V
γ
f = pi V

γ
i ainsi Vf =

(
pi
pf

) 1
γ

Vi =

(
pi
pf

) c
c+1

Vi

Ainsi,

Wif = c Vi

(
pf

(
pi
pf

) c
c+1

− pi

)
= 28.5 J
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5.8 Pentes des processus isothermes et adiabatiques

Pour un gaz parfait, montrer qu’en tout point d’un diagramme de Clapeyron
(p, V ), la valeur absolue de la pente est plus grande pour un processus adiaba-
tique (A) que pour un processus isotherme (I).

5.8 Solution

Dans un diagramme de Clapeyron, un processus isotherme (I) est caractérisé
par,

p V ≡ CI = cste où CI = NRT

Ainsi, pour un processus isotherme,

p =
CI
V

et
dp

dV
= − CI

V 2
= − NRT

V

1

V
= − p

V

Dans un diagramme de Clapeyron, un processus adiabatique (A) est caractérisé
par,

p V γ ≡ CA = cste où CA = p1− γ (NRT )
γ

Ainsi, pour un processus adiabatique,

p =
CA
V γ

et
dp

dV
= − γ CA

V γ+1
= − γ

(
NRT

pV

)γ
p

V
= − γ p

V

Les pentes des deux processus sont négatives dans un diagramme de Clapeyron.
Comme γ > 1, la valeur absolue de la pente du processus adiabatique est plus
grande que celle du processus isotherme.

5.9 Echauffement de nanoparticules par adsorption

Le processus à l’aide duquel les molécules de gaz se lient à une surface métal-
lique est appelé adsorption. Ici, les molécules sont adsorbées sur des nanoparti-
cules de Pt. La chaleur spécifique d’une nanoparticule de Pt est CV . La chaleur
transférée à une nanoparticule de Pt moyenne durant l’adsorption de molécules
est Qif . Déterminer l’augmentation de température ∆Tif = Tf − Ti d’une na-
noparticule de Pt, en supposant qu’elle constitue un système adiabatiquement
fermé.

Application numérique

CV = 1.4 · 10−18 J K−1, Qif = 6.5 · 10−16 J.

5.9 Solution

Durant l’adsorption de molécules, l’augmentation de température d’une nano-
particule moyenne de Pt est,

∆Tif =
Qif
CV

= 460 K
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5.10 Coefficients calorimétriques

La réponse thermique d’un système homogène qui subit un transfert de cha-
leur infinitésimal δQ est caractérisée par des coefficients définis par les équa-
tions (5.4) et (5.17) lorsque les variables d’état (T, V ) ou (T, p) sont utilisées.

1) Etablir une relation entre la chaleur latente d’expansion LV (T, V ) et la
chaleur latente de compression Lp (T, p).

2) Etablir une relation entre la chaleur latente de compression Lp (T, p) et
les chaleurs spécifique à volume constant CV (T, V ) et à pression constante
Cp (T, p).

5.10 Solution

1) Le transfert de chaleur infinitésimal est écrit en termes de la température
T et du volume V comme,

δQ = CV (T, V ) dT + LV (T, V ) dV

Le transfert de chaleur infinitésimal est écrit en termes de la température
T et de la pression p comme,

δQ = Cp (T, p) dT + Lp (T, p) dp

qui peut être exprimé en termes de la température T et du volume V
comme,

δQ = Cp (T, p) dT + Lp (T, p)

(
∂p (T, V )

∂T
dT +

∂p (T, V )

∂V
dV

)
=

(
Cp (T, p) + Lp (T, p)

∂p (T, V )

∂T

)
dT + Lp (T, p)

∂p (T, V )

∂V
dV

En identifiant les termes multipliant la différentielle du volume dV dans les
deux expressions du transfert de chaleur infinitésimal δQ écrites en termes
de la température T et du volume V , on obtient la relation,

LV (T, V ) = Lp (T, p)
∂p (T, V )

∂V

2) En identifiant les termes multipliant la différentielle de la température dT
dans les deux expressions du transfert de chaleur infinitésimal δQ écrites
en termes de la température T et du volume V , on obtient la relation,

CV (T, V ) = Cp (T, p) + Lp (T, p)
∂p (T, V )

∂T

qui est la relation de Mayer écrite en termes de la chaleur latente de com-
pression Lp (T, p).
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5.11 Trois cylindres

Trois cylindres i (où i = 1, 2, 3) de sections identiques A contiennent N moles
de gaz parfait (fig. 5.1). Les cylindres sont fixés sur une table qui assure un
contact thermique entre eux. Le système est maintenu à une température T
constante. Les pistons qui contiennent le gaz dans chaque cylindre sont montés
sur un levier. La masse du levier et les échanges de chaleur entre le gaz et le
dispositif mécanique sont négligeables.

Fig. 5.1 Trois cylindres renferment chacun N moles de gaz. La table assure une température
T constante des trois cylindres.

1) Déterminer la norme Fi de la force exercée par le i e piston sur le levier par
l’intermédiaire de la barre verticale.

2) En appliquant un principe de mécanique générale, lorsque que le levier est
en position horizontale, établir la condition d’équilibre pour les pressions
pi.

3) Déterminer la relation liant les variations infinitésimales de volume dVi
imposées par le levier.

4) Déterminer la variation infinitésimale d’énergie interne dU du système lors
d’un mouvement infinitésimal de levier.

5) Déterminer la variation infinitésimale d’entropie dS du système lors d’un
mouvement infinitésimal de levier à l’aide de la condition d’équilibre pour
les pressions.

5.11 Solution

1) Les N moles de gaz contenues dans le i e cylindre satisfont l’équation d’état
d’un gaz parfait (5.47),

pi Vi = NRT

La norme Fi de la force exercée sur le levier par N moles de gaz contenues
dans le i e cylindre vaut,

Fi = ‖F i‖ = piA =
NRTA

Vi
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2) A l’équilibre, la condition mécanique imposée au système est que la somme
des moments de force extérieurs M ext

i évalués par rapport à un point de
l’axe du levier soit nulle. Lorsque le levier est à l’horizontale, cette condition
s’exprime explicitement comme,

3∑
i=1

M ext
i = 0 ⇒ (2F1 + F2 − 3F3) d = 0

En divisant cette condition par Ad, on obtient une relation liant les pres-
sions à l’équilibre,

2p1 + p2 − 3p3 = 0

3) Lors d’un processus infinitésimal isotherme correspondant à un mouvement
infinitésimal du levier, la variation infinitésimale de volume dVi du gaz dans
le i e cylindre est donnée par,

dVi = Adhi

où dhi est la variation infinitésimale de hauteur du piston etA est sa section.
La figure implique que,

dh1 = 2dh2 et dh3 = − 3dh2

ce que implique alors après multiplication par la section A que,

dV1 = 2dV2 et dV3 = − 3dV2

Par conséquent, le volume total de gaz V est constant,

dV1 + dV2 + dV3 = 0 et ainsi V = V1 + V2 + V3 = cste

4) Compte tenu de l’extensivité de l’énergie interne, lors d’un processus in-
finitésimal isotherme (i.e. dT = 0), la variation d’énergie interne dUi du
gaz contenu dans le i e cylindre est nulle, ce qui implique que la variation
infinitésimale d’énergie interne (5.62) du système est également nulle,

dUi = cNRdT = 0 et ainsi dU =

3∑
i=1

dUi = 0

5) Compte tenu de la relation de Gibbs (4.1) et de l’extensivité de l’entropie et
du volume, lors d’un processus infinitésimal isotherme correspondant à un
mouvement de levier, la variation infinitésimale d’entropie dS du système
vaut,

dS =

3∑
i=1

dSi =

3∑
i=1

pi dVi
T

= NR

3∑
i=1

dVi
Vi

= NR

(
dV1

V1
+
dV2

V2
+
dV3

V3

)
On est alors en mesure de montrer que la variation infinitésimale d’entropie
dS du système lors d’un mouvement infinitésimal de levier est nulle,

dS = NRdV2

(
2

V1
+

1

V2
− 3

V3

)
=
dV2

T

(
2p1 + p2 − 3p3

)
= 0


