CHAPITRE 5

Calorimétrie

5.1 Transfert de chaleur comme fonction de V' et p

Le transfert de chaleur infinitésimale dQ) est exprimé comme fonction des va-
riables d’état T et V' dans ’équation (5.4). Il est exprimé comme fonction des
variables d’état T' et p dans ’équation (5.17). Exprimer ce transfert de chaleur
infinitésimale §@Q) comme fonction des variables d’état V et p.

Solution

Le transfert de chaleur infinitésimale 6@ peut étre exprimé comme fonction du
volume V et de la pression p,

0Q =T (V,p)dS (V,p) = Ly (V,p)dV + L, (V,p) dp

ou

95 (V. p)
ov

98 (V,p)

Ly (V,p) =T (V,p) ap

et L,(V,p)=T(V,p)

5.2 Pompe a vélo

Une pompe a vélo prend un volume AV d’air a pression atmosphérique pg et
température constante Tj et le compresse pour qu’il entre dans un pneu de
volume Vj. L’air dans le pneu est initialement & pression atmosphérique py et
peut étre considéré comme un gaz parfait. Déterminer le nombre n de fois que
I'utilisateur doit pomper de I'air dans le pneu pour atteindre une pression py.
On suppose que la pompe est congue de sorte que l'air dans le pneu est toujours
a température Tj.
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Application numérique

V=501 AV =121et py = 2.5pp.

Solution

Le nombre initial de moles de moles d’air dans le pneu de volume V{ a tempé-
rature Ty est,

po Vo
N =
"7 RT,
et le nombre final est
Vi N
= Py 7o ainsi P
RTy No po

Le nombre de moles supplémentaires d’air pompées chaque fois dans le pneu
est,

Po AV
AN = t Ny = N, AN
RT, € f o+n
Ainsi,
Nf AN Po AV AV Dy
A A Db S AP <l AR Il o
No No No RTp Vo po
ce qui implique que,
Pr Vo
== - — =62.5
" (p() ) AV

Cela signifie que l'air doit étre pompé 63 fois afin d’atteindre une pression finale
py qui est égale ou supérieure a 2.5 pg.

5.3 Transfert de chaleur a pression constante

Un récipient rempli de gaz est isolé thermiquement de I’environnement excepté
pour un petit trou qui garantit que la pression a I'intérieur du récipient est égale
a la pression atmosphérique pg. Initialement, le récipient contient N; moles de
gaz & température T;. La chaleur spécifique molaire du gaz & pression constante
est ¢,. Le gaz est chauffé par une résistance électrique dans le récipient jusqu’a
une température finale 7. Durant ’augmentation de température du gaz, une
partie du gaz sort du récipient par le petit trou. On suppose que pour le gaz
qui reste dans le récipient, le processus est réversible est on néglige la chaleur
spécifique de la résistance. Déterminer :

1) le volume Vj du récipient.
2) le nombre de moles AN qui sortent du récipient durant ce processus.

3) la chaleur @,y transférée durant ce processus.
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Application numérique

po = 10° Pa, Ny = 10 moles, Ty = 273 K, cp=29.11J K= mol~!, Ty = 293K.

Solution

1) Le volume du récipient est,

N;RT;
Vo= u =2271
Po
2) Le nombre final de moles est,
Vi T;
Nf _ Po Vo — N, =&
RTy Ty
Ainsi, le nombre de moles quittant le récipient durant ce processus est,
T;
f

3) A l’aide d’un résultat établi en 2), la chaleur transférée durant ce processus
est,

f T dr Ty
Qif:/ NcpdT:cpNiTi/ — =¢,N;T; In <f) = 5.6 kJ
i r, T T;

5.4 Chaleur spécifique d’un métal

Un bloc métallique de masse M est amené a une température Ty. Il est alors
plongé dans un calorimetre rempli d’une masse M’ d’eau. Le systeme constitué
du bloc métallique et du calorimetre rempli d’eau est considéré comme isolé.
Durant ce processus, la température de I'eau augmente de T; & T, la tempé-
rature d’équilibre. La chaleur spécifique de ’eau par unité de masse est cj;/.
Déterminer la chaleur spécifique par unité de masse du métal ¢}, en fonction
des températures utilisées dans cette expérience. Considérer que le calorimetre
est constitué d’un matériau de chaleur spécifique négligeable.

Application numérique

M =05kg, M' =1kg, Ty = 120°C, T; = 16°C, Ty = 20°C and ¢}, = 4187 J
kg~! K1

Solution

Comme le systéme constitué du bloc métallique et de I’eau est isolé, la variation
d’énergie interne est nulle,

AUif = MC?\/] (Tf — To) +M/CRI/ (Tf - TZ) =0
ce qui donne la chaleur spécifique par unité de masse du métal,
M Ty - T,

o=t — L~ =335 kg LK!
‘M = CMm M T, — Ty g
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5.5 Accroissement de la température lors d’un choc

Un solide de masse M est en chute libre d’'une hauteur h. Il entre en collision
avec le sol et reste collé au sol apres le choc. Durant le choc, on suppose qu’il
n’y a pas de déformation macroscopique du solide et qu’il n’y a pas de transfert
de chaleur entre le sol et le solide. Soit ¢ ’état initial juste avant la collision et
f Détat final juste apres la collision. Déterminer la variation de température du
solide AT;¢ durant le choc.

Solution

Par conservation de 1’énergie mécanique avant le choc, ’énergie cinétique du
solide juste avant le choc est égale a I’énergie potentielle de pesanteur initiale.
Durant le choc, ’énergie cinétique du solide est entierement convertie en énergie
interne. Par conséquent, la variation d’énergie interne est donnée par,

AUy = Mgh

En prenant la différence de I'expression (5.46) de ’énergie interne durant le
choc, on obtient,
AU;y = 3NR ATy

Ainsi 'augmentation de la température du solide durant le choc est de la forme,

Mgh

ATir = 3NR

5.6 Mesure de la chaleur spécifique de ’eau

Des étudiants chauffent de I’eau avec un corps de chauffe électrique constitué
de N moles de fer. A Paide d’un thermometre, ils relevent la température T (¢)
de l'eau et constatent qu’elle augmente linéairement en fonction du temps,

T(t)=Ty+at

ol Ty est la température ambiante et o > 0 est une constante positive. La
puissance électrique du corps de chauffe est entierement convertie en puissance
thermique Py par effet Joule (sect. 11.4.11). On néglige 'expansion du volume
d’eau et on considere que la chaleur spécifique Cy, a volume constant de I'eau
est indépendante de la température.

1) Déterminer I'expression de la chaleur spécifique Cy & volume constant de
I’eau en fonction de la puissance thermique Pg du corps de chauffe et du
coefficient expérimental o en prenant en compte le fait que le corps de
chauffe doit aussi étre chauffé.

2) Déterminer lexpression de la variation d’entropie AS de l'eau durant un
intervalle de temps At en fonction de Cy et «.



Travail en compression adiabatique 5

Solution

1) La chaleur spécifique & volume constant du systéme est la somme des
chaleurs spécifiques a volume constant du corps de chauffe en fer, donné
par I’équation (5.44), et de ’eau. Ainsi, d’apres la relation (5.3) a volume
constant, i.e. V= 0, la puissance thermique s’écrit,

Py =(Cy +3NR)T

Des deux équations précédentes et de la dépendance en temps de la tem-
pérature T (t), on tire U'expression de la chaleur spécifique de 1’eau,

P,
Oy = -9 _ 3NR
Q

2) A laide de I’équation (5.32), la variation d’entropie AS s’écrit,

Totadt gr At
AS =C / — = ln(l—l—a)
v T T v 1o

5.7 Travail en compression adiabatique

Un gaz parfait subit une compression adiabatique réversible d’un volume initial
Vi et d’une pression initiale p; & une pression finale py. Déterminer le travail
Wiy effectué sur le gaz durant ce processus.

Application numérique

V=11 p;, =5-10° Pa, py = 2p;, ¢ = 5/2 (définition (5.62)).

Solution

Pour une compression adiabatique, le travail effectué sur le gaz est exprimé
comme,

Wiy = AUy = cNo R(Ty — T3) :C(pfvf - ini)

S\ 7 A==
pr VI =p; V) ainsi vf<pl) m(“) V;

Ainsi,



6 Calorimétrie

5.8 Pentes des processus isothermes et adiabatiques

Pour un gaz parfait, montrer qu’en tout point d’un diagramme de Clapeyron
(p, V), la valeur absolue de la pente est plus grande pour un processus adiaba-
tique (A) que pour un processus isotherme (I).

Solution

Dans un diagramme de Clapeyron, un processus isotherme (I) est caractérisé
par,

pV = Cr = cste ou Cr=NRT
Ainsi, pour un processus isotherme,

_a _NRET 1 p

o M _ C_ NRT1 P
v A = A A 7

p

Dans un diagramme de Clapeyron, un processus adiabatique (A) est caractérisé
par,
pVI=Ca=cste ot Ca=p' 7 (NRT)"

Ainsi, pour un processus adiabatique,

G d_ 9Ca (NRTN'p _ p
SV av. vrtt o pV

D v Ty

Les pentes des deux processus sont négatives dans un diagramme de Clapeyron.
Comme v > 1, la valeur absolue de la pente du processus adiabatique est plus
grande que celle du processus isotherme.

5.9 Echauffement de nanoparticules par adsorption

Le processus a ’aide duquel les molécules de gaz se lient a une surface métal-
lique est appelé adsorption. Ici, les molécules sont adsorbées sur des nanoparti-
cules de Pt. La chaleur spécifique d’une nanoparticule de Pt est Cy . La chaleur
transférée a une nanoparticule de Pt moyenne durant I’adsorption de molécules
est (jy. Déterminer 'augmentation de température AT;y = Ty — T; d’une na-
noparticule de Pt, en supposant qu’elle constitue un systeme adiabatiquement
fermé.

Application numérique

Cy=14-1078 J K1, Q;y =6.5-10716 J.

Solution

Durant ’adsorption de molécules, 'augmentation de température d’une nano-
particule moyenne de Pt est,
ATy = Qi _ 40k
Cvy
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5.10 Coefficients calorimétriques

La réponse thermique d’un systéme homogene qui subit un transfert de cha-
leur infinitésimal 0@ est caractérisée par des coefficients définis par les équa-
tions (5.4) et (5.17) lorsque les variables d’état (T, V') ou (T, p) sont utilisées.

1)

2)

Etablir une relation entre la chaleur latente d’expansion Ly (T,V) et la
chaleur latente de compression Ly, (T’ p).

Etablir une relation entre la chaleur latente de compression L, (T,p) et
les chaleurs spécifique & volume constant Cy (T, V') et & pression constante

Cp (T, p).

Solution

1)

Le transfert de chaleur infinitésimal est écrit en termes de la température
T et du volume V' comme,

5Q = Cy (T, V)dT + Ly (T,V)dV

Le transfert de chaleur infinitésimal est écrit en termes de la température
T et de la pression p comme,

0Q =C, (T,p)dT + L, (T,p) dp

qui peut étre exprimé en termes de la température T et du volume V
comme,

op(T,V op(T,V
5Q=Cp(T,p)dT+Lp(T,p)( p(m: )dT+ pf’){} )dV>

op(T,V)
oT

op (T,V)

57 dav

- (cp (T,p) + L, (T, p) ) dT'+ Ly (T, p)

En identifiant les termes multipliant la différentielle du volume dV dans les
deux expressions du transfert de chaleur infinitésimal 0@ écrites en termes
de la température T et du volume V', on obtient la relation,

op (T, V)

Ly (T, V)= L, (T,p) v

En identifiant les termes multipliant la différentielle de la température dT’
dans les deux expressions du transfert de chaleur infinitésimal 6@ écrites

en termes de la température 7' et du volume V', on obtient la relation,
op(T,V
Cv (1) = Gy (Tp) + L, (1) 2TV

qui est la relation de Mayer écrite en termes de la chaleur latente de com-
pression Ly, (T, p).
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5.11 Trois cylindres

Trois cylindres 7 (ot ¢ = 1,2,3) de sections identiques A contiennent N moles
de gaz parfait (fig. 5.1). Les cylindres sont fixés sur une table qui assure un
contact thermique entre eux. Le systeme est maintenu a une température 7'
constante. Les pistons qui contiennent le gaz dans chaque cylindre sont montés
sur un levier. La masse du levier et les échanges de chaleur entre le gaz et le
dispositif mécanique sont négligeables.

Fig. 5.1 Trois cylindres renferment chacun N moles de gaz. La table assure une température
T constante des trois cylindres.

1)

2)

Déterminer la norme F; de la force exercée par le i ¢ piston sur le levier par
I'intermédiaire de la barre verticale.

En appliquant un principe de mécanique générale, lorsque que le levier est
en position horizontale, établir la condition d’équilibre pour les pressions
Di-

Déterminer la relation liant les variations infinitésimales de volume dV;
imposées par le levier.

Déterminer la variation infinitésimale d’énergie interne dU du systeme lors
d’un mouvement infinitésimal de levier.

Déterminer la variation infinitésimale d’entropie dS du systeme lors d’un
mouvement infinitésimal de levier & 'aide de la condition d’équilibre pour
les pressions.

Solution

1)

Les N moles de gaz contenues dans le ¢ cylindre satisfont I’équation d’état
d’un gaz parfait (5.47),
piVi = NRT

La norme F; de la force exercée sur le levier par N moles de gaz contenues
dans le 7° cylindre vaut,

NRTA

[Fill =p V.
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2) A T’équilibre, la condition mécanique imposée au systéme est que la somme
des moments de force extérieurs M " évalués par rapport & un point de
I’axe du levier soit nulle. Lorsque le levier est a I’horizontale, cette condition
s’exprime explicitement comme,

3

ZMiCXt =0 = (2F+F—-3F;)d=0

i=1
En divisant cette condition par Ad, on obtient une relation liant les pres-
sions a 1’équilibre,

2p1+p2— 3p3 =0
3) Lors d’un processus infinitésimal isotherme correspondant & un mouvement

infinitésimal du levier, la variation infinitésimale de volume dV; du gaz dans
le ©° cylindre est donnée par,

dV; = Adh;

ou dh; est la variation infinitésimale de hauteur du piston et A est sa section.
La figure implique que,

dhy = 2dhs et dhs = — 3dhy
ce que implique alors apres multiplication par la section A que,

dVvy = 2dVs et dVs = —3dV,
Par conséquent, le volume total de gaz V' est constant,

dVi+dVa +dV3 =0 et ainsi V=V + Vo4 V5 =cste

4) Compte tenu de l'extensivité de I’énergie interne, lors d’un processus in-
finitésimal isotherme (i.e. dT' = 0), la variation d’énergie interne dU; du
gaz contenu dans le ¢° cylindre est nulle, ce qui implique que la variation
infinitésimale d’énergie interne (5.62) du systéme est également nulle,

3
dU; =cNRdAT =0  etainsi dU =Y dU;=0
i=1
5) Compte tenu de la relation de Gibbs (4.1) et de I'extensivité de ’entropie et
du volume, lors d’un processus infinitésimal isotherme correspondant & un
mouvement de levier, la variation infinitésimale d’entropie dS du systeme
vaut,

3 3 3
i AV dv; d d avs
ds=3"ds, =37 :NRE:‘Y:NR<‘Y1+‘Y2+ “)
= Vi 1 2

i=1 o T V3
On est alors en mesure de montrer que la variation infinitésimale d’entropie
dS du systeme lors d’'un mouvement infinitésimal de levier est nulle,
2 1 3 ) AV

dS=NRdVo | —+ —— — | = —=—=(2 -3 =0
2(V1 +V2 Va T (pl + p2 p3)



